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Combined exposures to multiple chemicals may result in interactions leading to a significant increase or decrease in the overall toxicity of the
mixture compared to the summation of the toxicity of the components. A large number of chemical interactions have been described in animal
studies by administering high doses of chemicals by routes and scenarios often different from anticipated human exposures. Though limited, there
is some evidence for the occurrence of several supra-additive (the combined effects are greater than the simple summation of the individual effects)
and infra-additive (the combined effects are smaller than the simple summation of the individual effects) chemical interactions in humans. For exam-
ple, toxicokinetic interactions between several solvents have been found to occur in the workplace, whereas those involving pesticides have been
reported less frequently, especially during accidental exposures. Toxic interactions involving nutritionally important metals and metalloids appear to
occur more frequently, since several of them have an important role in a variety of physiological and biochemical processes. On the
contrary, there is not much evidence to confirm the occurrence of toxic interactions among the commonly encountered inorganic gaseous
pollutants in humans. Overall, the majority of chemical interactions observed in animal studies have neither been investigated in humans nor been
extrapolated to humans based on appropriate mechanistic considerations. Future research efforts in the chemical interactions arena should address
these issues by focusing on the development of mechanistically and biologically based models that allow predictions of the extent of interactions
likely to be observed in humans.-Environ Health Perspect 102(Suppl 9):11-17 (1994)
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Introduction

Toxic interaction refers to the qualitative
and/or quantitative modification of the toxi-
city of one chemical by another, the process

principally occurring within the organism
after the exposure phase (1). Interactions can

either result in greater-than-additive or less-
than-additive toxic response. Over a thou-
sand studies published to date report the
occurrence of supra- or infra-additive toxicity
from combined exposure to two chemicals
(2). The interactive toxicity resulting from
combined exposures to chemicals is a conse-

quence of the alteration of the toxicokinetics
and/or toxicodynamics of one chemical by
another. Interference at the kinetic level
would imply a modulation of absorption,
distribution, metabolism and/or excretion of
one chemical by another. Interference at the
toxicodynamic level might involve a compe-

tition between two chemicals for binding to
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the target site or an alteration by one chemi-
cal of the susceptibility of the target cells to
the effects of another agent.

Despite the report of the occurrence of
several significant interactions between envi-
ronmental pollutants, their relevance for
humans and relative importance for regula-
tion remain unclear and ill-defined. This sit-
uation is a consequence of the lack of
chronic exposure studies with chemical mix-
tures and the lack of understanding of the
mechanistic basis of interactions at a quanti-
tative level. Until these issues are resolved,
we probably would not be able to confi-
dently use animal data on interactions to
make quantitative predictions for humans.
However, there is some direct and/or epi-
demiological evidence for the occurrence of
several supra-additive and infra-additive
chemical interactions in humans. In this
article, we corroborate laboratory observa-
tions with human experience as they relate
to toxic interactions among environmental
pollutants and propose an approach to con-
sider data on toxic interactions for human
health risk assessment.

Toxic Interactions among Gaseous
Poliutants
Interactions among gaseous air pollutants most
commonly involve physicochemical mecha-
nisms rather than toxicodynamic/kinetic inter-

ferences. A number ofanimal studies have sug-
gested the occurrence of supra-additive and
infra-additive interactions among gaseous pol-
lutants (Figures 1,2). Of those interactions
observed in laboratory studies, there is evi-
dence suggesting that a few of them may have
actually been experienced by humans. For
example, the antagonistic interaction resulting
from combined exposure to sulfuir dioxide and
ammoniacal compounds is thought to have
been encountered during the London fog dis-
aster of 1952 (3). The supra-additive toxicity
resulting from combined exposures to sulfur
dioxide and ozone may have been a causative
factor of the high mortality of Japanese chil-
dren observed in the early seventies (4). The
reported higher incidence of cancer among
workers in arsenic-smelting facilities has been
explained by the supra-additive effects between
arsenic and benzola]pyrene observed in labora-
tory animals (5). However, the majority of the
interactions involving commonly occurring
gaseous pollutants (i.e., NOx, SOx, ozone,
aerosols) that have been well characterized in
animal studies do not seem to occur in
humans (6-11).

Toxic Interacdons among
Pesticidal Chemicals
Humans ingesting food preparations con-
taminated with one or more pesticides,
workers in pesticide manufacturing and
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Figure 3. Supra-additive interactions among pesti-
cides demonstrated in animal studies (2). Abreviations:
BPMC, 2-sec-butylphenylmethylcarbamate; DDT, 1,1,1-
trichloro-2,2-bis-(4-chlorophenyl) ethane.
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Figure 4. Infra-additive interactions among pesticides
demonstrated in animal studies (2).

populations has been reported by several
authors (30-34).

Similar protective effects of zinc on lead
toxicity have been reported in certain ani-
mal and human studies. In a survey of
industrial workers, Dukiewicz et al. (35)
found significantly reduced excretion of
aminolevulenic acid in workers exposed to
both lead and zinc compared to those
exposed to lead alone. Though the protec-
tive action of zinc in the case of lead poi-
soning is suggested (36), its relevance for
humans still remains uncertain (37,38).

The absorption of zinc is reduced in the
presence of inorganic iron as a result of a
competition for intestinal carrier sites (39).
According to this mechanistic description,
25 mg of total ions (as the sum of zinc and
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Figure 5. Supra-additive interactions among metals
and metalloids demonstrated in animal studies (2).
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Figure 6. Infra-additive interactions among metals and
metalloids demonstrated in animal studies (2).
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Figure 8. Supra-additive interactions among solvents
demonstrated in animal studies (2).

iron administered orally) is the point of sat-
uration, at which competitive effect will
begin to be expressed (39). Evidence in
support of interaction between iron and
zinc/cadmium has been obtained in human
studies (40).

Toxic Interactions among Solvents
Combined exposure to organic solvents
often results in a mutual inhibition of their
metabolism, since most of them appear to
be metabolized by cytochrome P450 2E1
at low exposure concentrations. Figure 7
presents the inhibitory interactions among
solvents determined in laboratory animal
studies. Of the metabolic inhibition inter-
actions observed in animal studies, the fol-
lowing have been confirmed in human
volunteer/occupational exposure studies:
trichloroethylene and 1,1,1-trichloroethane
(41), benzene and toluene (42), ethylben-
zene and m-xylene (43), xylene and
toluene (44), trichloroethylene and tetra-
chloroethylene (45), m-xylene and methyl
ethyl ketone (46) and m-xylene and isobu-
tanol (47). These inhibitory metabolic
interactions are characterized by reduced/
delayed production and excretion of meta-
bolites, and/or increased concentrations of
parent chemical(s) in the blood and expired
air. However, the health significance of sev-
eral of these metabolic interactions has not
been confirmed in workers occupationally
exposed to binary solvent mixtures
(48,49). The inhibitory metabolic interac-
tions can be expected to result in supra-
additivity with respect to the toxicity of the
parent chemicals.

Supra-additive toxicity during exposure
to binary mixtures of solvents has often
been observed in animal studies, whenever
one of the two solvents was a potent
inducer of activating enzymes, or an
inhibitor of detoxication enzyme system
(50,51). Thus, most of the solvents that
induce P4502E1 upon prior administration
(e.g., ketones) have been shown to potenti-
ate the toxicity of other solvents bioacti-
vated by the same isoenzyme (Figure 8).

In human experience, isopropanol, a
ketogenic chemical, was the suspect poten-
tiator of the hepato-renal toxicity of car-
bon tetrachloride in two separate industrial
accidents (52,53). Similarly, methyl ethyl
ketone-induced potentiation of n-hexane/
MnBK neurotoxicity, through the en-
hanced formation of 2,5-hexanedione,
appears to have been responsible for the
outbreak of an occupational neuropathy
among the textile workers in Ohio (54,55)
and among glue sniffers in West Berlin in
the seventies (56).

Relevance ofAnimal Data on Chemical
Interactions for Quantitative Risk
Assessment
In evaluating the relevance of chemical
interactions for regulatory purposes, it is
important to consider the underlying
mechanisms. Understanding the mechanis-
tic basis enables us to determine whether or
not an interaction will occur at low expo-
sure levels in animals, and if it will occur at
all in other species, especially, humans.
Table 1 presents some of the mechanisms
of interaction unequivocally demonstrated
in animal and/or human studies.

The data generated in most interaction
studies are qualitative, supporting or sug-
gesting a specific mechanism as the possible
cause of the infra- and supra-additivity. For
quantitative risk assessment (QRA) pur-
poses, we need quantitative mechanistic data
on chemical interactions. For example, what
is the dose-response for the induction or
inhibition of metabolism of one chemical by
another? What is the quantitative relation-
ship between two chemicals competing for
protein binding? Such quantitative analyses
of chemical interactions can be conducted
when the interrelationships among the criti-
cal determinants of chemical disposition,
action and interaction are identified and
integrated within a biologically based mod-
eling framework. To date, this quantitative
modeling approach has been applied only
for a few binary chemical mixtures (72).

Since the quantitative mechanistic basis
of chemical interactions has not been eluci-
dated for majority of interacting chemical

combinations, their relevance for humans
cannot be evaluated confidently. On the
other hand, regardless of the level of mech-
anistic understanding of interchemical
interactions, there are instances that require
the evaluation of the relevance of data on
chemical interactions for specific purposes
(e.g., for ensuring worker safety).

Under these circumstances, we are
obliged to analyze the available data and
come up with a tentative conclusion
regarding the importance of an interaction
for a given exposure situation. There are
certain types of data which suggest that a
particular interaction is unimportant for
humans. These relate primarily to instances
where the animal studies show the exis-
tence of thresholds for interactions which
exceed the maximum allowable exposure
concentrations for humans, and where ani-
mal studies confirm the occurrence of
interactions which do not occur in humans
exposed to low levels of both chemicals.

An example of the former case is the
EPN (O-ethyl-0-4-nitrophenyl phenyl
phosphonothioate) malathion potentiation.
This interaction, shown to be important at
high doses (73), was not apparent when
animals were fed recommended daily toler-
ance levels of both chemicals (74), suggest-
ing that the potentiation may not occur in
humans exposed to much lower concentra-
tions of these chemicals. Thus, Moeller and
Rider (75), giving small oral doses of EPN
and malathion in combination to human
volunteers, found no evidence of EPN
potentiation of malathion toxicity.

An example of the second type is the
interaction among several commonly
occurring air pollutants. Pulmonary bio-
chemical and morphological changes
induced by nitrogen dioxide have been
reported to be enhanced by coexposure to
acidic aerosols (76). This interaction
occurs even at levels of 1 mg/m3 of sulfuric
acid aerosol and 2 ppm of nitrogen diox-
ide. But in human exposure studies, Stacey
et al. (7) could not detect any synergistic
effect in people exposed to low levels of
both chemicals. Similarly, synergistic inter-
action between ozone and sulfuric acid
aerosols has been demonstrated in animals
exposed to atmospheric concentrations of
0.12 ppm and 5 mg/m3, respectively (77).
Yet, Horvath et al. (10) found that a 2-hr
exposure to a mixture of 0.2 ppm of ozone
and 1.2 to 1.6 mg/m3 of sulfuric acid
aerosol did not induce effects beyond what
could be attributed to human exposure to
ozone alone.

Detailed investigations of this kind
have not been conducted for the majority
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of the several hundred interactions
reported to occur among environmental
pollutants at high doses (2). Neither
chronic animal exposure data nor human
volunteer exposure data are available for
these binary mixtures, rendering the assess-
ment of their relevance for humans diffi-
cult. When confronted with a particular
exposure situation involving chemical
interactions, one should evaluate the avail-
able information on that interaction (or for
a similar chemical combination), on the
basis of factors such as dose administered

and species used, to determine the rele-
vance for humans (Figure 9). Accordingly,
if such an evaluation indicates a high prob-
ability for occurrence of an interaction
between two chemicals encountered in a
particular workplace setting, then necessary
precautions should be taken to avoid such a
combined exposure. In the following para-
graphs, we discuss four categories of data
that should be given consideration in
decreasing order of importance, while eval-
uating the relevance of information on
chemical interactions for humans.

Interactions Demonstrated in
Humans Exposed At or Below
Allowable Exposure Concentrations
([LV, RC, RID)
Toxic interactions demonstrated in
humans, in most cases, pertain to occupa-
tional exposures involving solvents more
frequently than other types of contami-
nants. Toxicokinetic interactions among
various solvents often arise from the
mutual inhibition of their metabolism,
thus resulting in increased blood levels.
Such inhibitory metabolic interactions may

Table 1. Examples of mechanisms of toxicokinetic interactions among chemicals.

Basis of interaction Interacting chemicals Mechanism of interactive effects References

m-Xylene and isobutanol

Dimethyl sulfoxide (DMSO) and
pesticides

Reduced absorption of both compounds due to dehydration
of skin elicited by isobutanol

Increased dermal absorption of pesticides and other
chemicals when they are mixed with DMSO, which
disrupts the cellular permeability and acts as a "penetrant
carrier"

Rilhimaki (47)

Jacob et al. (57)
Hayes and Pearce (58)

Pulmonary

Gastrointestinal

Distribution
Tissue distribution

Protein binding

Metabolism
Phase

Induction

Inhibition

Phase II

Induction

Inhibition

Excretion
Pulmonary

Biliary

Urinary

Hydrogen cyanide (HCN) and
carbon monoxide

Lead and iron

Lead and dithiocarbamates

Organochlorine and
organophosphate pesticides

Methyl n-butyl ketone
(MnBK) and chloroform

Dithiocarbamates and
chloroform

Sodium sulfate and
certain arylamines

Pentachlorophenol and
arylamines

Ethanol and
mercury

Arsenic and selenium
Mercury and selenium

Sodium bicarbonate
(NaHCO3) and fluoride

Increased pulmonary uptake of air contaminants when they
are present along with HCN, which at low concentrations
increases the pulmonary ventilation rate

Decreased absorption of lead in the presence of iron due to
competition for transport sites in the intestinal mucosa.

The lipophilic lead-dithiocarbamate complex has a greater
capacity than lead alone to penetrate the blood-brain
barrier and causes a greater accumulation in the lipid-rich
brain components.

Organochlorine pesticides not only enhance the biotrans-
formation of organophosphates, but also enhance their
binding to plasma proteins and nonspecific esterases.

Increased bioactivation of chloroform due to induction of
hepatic microsomal P450 2E1 by MnBK.

Decreased bioactivation of chloroform due to inhibition of
hepatic microsomal enzymes by dithiocarbamates.

Increased sulfate supply might result in a greater amount
available for conjugation of xenobiotics and their metabo-
lites.

Pentachlorophenol, an inhibitor of cytosolic sulfotrans-
ferases, renders such compounds as N-hydroxy-2-acetyl-
aminofluorene (that are activated by the formation of
sulfate esters) less toxic.

Ethanol depresses the conversion of elemental mercury into
ionic form. Their coexistance results in a diminution of the
pulmonary retention as well as blood levels of mercury and
enhances its pulmonary exhalation.

Arsenic increases the clearance of selenium from the liver
into the bile. Selenium, on the other hand, inhibits the
biliary excretion of mercury.

Alkalosis induced by NaHCO3 causes a more rapid renal
clearance of fluoride.

Dreisbach (59)

Conrad and Barton (60)

Osakrsson (61)

Trioloand Coon (62)
Cohen and Murphy (63)

Brady et al. (51)

Gopinath and Ford (64)

Meerman et al. (65,66)

Nielsen-Kudsk (67)
Magos et al. (68)

Lavender and Baumann (69)

Reynolds et al. (70);
Whitford and Pashley
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Figure 9. A preliminary schematic for considering data
on chemical interactions for regulation. Abbreviations:
Y, yes; N, no; UCF 1/11, uncertainty factors.

eventually cause supra-additive neurotoxic
effects even at exposure concentrations that
do not exceed their respective TLVs.
However, these toxicokinetic interactions
involving mainly the biotransformation
system appear to have a threshold level for
each component.

Toxic interactions demonstrated in
nonoccupational settings, i.e., the general
environment, mainly involve nutritionally-
important metals. In this regard, antago-
nistic effects on the absorption of toxic
metals have often been reported to occur
with higher intake of iron and zinc.
Importantly, these interactions occur even
when the dietary intake of one of these
metals is insufficient, and therefore can be
regarded as being more relevant for
humans than mrost of the other chemical
interactions.

Another interaction that belongs to this
category is that of selenium and several car-
cinogens. A number of epidemiologic stud-
ies have reported an inverse relationship
between the selenium status and the inci-
dence rates of various types of cancer and
cardiovascular diseases in humans (78-80).
Recently, Yu et al. (81) have reported that
the primary liver cancer incidence in peo-
ple (in the Chinese province of Jiangsu)
consuming selenium supplemented table
salt was lower than that in the population
not receiving selenium supplementation.

Interacdons Demonstrated
in Humans at High Expoure
Concentrations Only
Certain chemical interactions occur only at
high doses or after unusual exposure sce-
narios (e.g., accidental exposures). An
example of this category is the ketone-
haloalkane interaction. The suspected
supra-additive interaction between iso-
propanol and carbon tetrachloride
occurred in two instances, both when the
environmental concentrations exceeded the
allowable exposure limits (52,53). It is
understandable that when enzyme induc-

tion is the mechanism involved, there
probably is a threshold for interaction.
Particularly, this type of interaction can be
expected to be insignificant at low exposure
concentrations, where the rate-limiting fac-
tor of metabolism is hepatic blood flow
and not the capacity of the enzyme system.
On the other hand, the enzyme inducers,
on coexposure, may become inhibitors of
metabolism of other chemicals, the impor-
tance of such an interaction being deter-
mined by the affinity and relative roles of
various isoforms of P450 involved in the
metabolism of both chemicals.

Interacdons Demonstrated in
Animal Studies at Low Doses
but Potential for Occurrence in
Humans Not Known
Several chemicals acting as inhibitors of
hepatic and extrahepatic metabolism
appear to have greater potential for interac-
tion than inducers at low exposure concen-
trations. Apparently, the quantitative
importance of the influence of an inhibitor
on another chemical depends on the mag-
nitude of the inhibition constant, K1. Based
on experimental and simulation studies,
trans-1,2-dichloroethylene (DCE) has been
suggested to be a potent suicide inhibitor
of P450 (82). Therefore, metabolic inhibi-
tion of a variety of chemicals by DCE can
be expected during combined exposures,
even though direct evidence in humans is
not yet available. Based on mechanistic
considerations, uncompetitive and non-
competitive inhibitions are also quantita-
tively more important than competitive
inhibition. Benzene-toluene interaction in
animals has been described to be the result
of noncompetitive interaction (83), indi-
cating that this interaction can occur at low
exposure concentrations. Evidence for
mutual inhibitory interaction between
these chemicals has actually been obtained
in an occupational exposure monitoring
study (42). Another example belonging to
this category is the toxicodynamic interac-
tion between chlordecone and carbon
tetrachloride demonstrated at low doses in
animal studies (84).

Interacdons Demonstrated in
Animal Studies at High Doses but
Potential fir Occurrence at Low Doses
Not Known
Most of the chemical interaction studies
conducted to date belong to this category.
Typically, these studies have involved the
administration of high doses of one or both
chemicals by routes and scenarios often dif-
ferent from anticipated human exposures.

The potential of these interactions to occur
during low-dose, chronic exposures is not
known. Consideration of the number of
combinations that need to be tested at low
doses in chronic experiments, by at least one
exposure route, emphasizes the need to uti-
lize alternative methodologies, particularly
predictive modeling strategy. This quantita-
tive approach involves the integration of
mechanistic factors of chemical disposition,
interaction, and effect into a biologically
based framework, that provides the basis for
predicting the extent of interactions in
untested exposure situations (72).

There is also the possibility that an
interaction, not occurring in animals at
high or low doses, may in fact occur in
humans exposed to low concentrations.
Based on mechanistic considerations, such
observations would suggest differences in
the mechanistic determinants of interac-
tion between the two species (e.g., tran-
species variation in the relative roles of
different P450 isozymes).

The preceding analysis of the relevance
and relative importance of experimental
data on chemical interactions for humans
covered only certain of the important
aspects. For example, the influences of
exposure routes and sequence of chemical
exposures in the interaction studies are not
explicitly taken into account. These factors
are being considered in a weight-of-evi-
dence approach formulated by the
Environmental Criteria Assessment Office
of the U.S. Environmental Protection
Agency (85).

In summary, there is some evidence for
the occurrence of chemical interactions in
humans, particularly in the occupational
environment and during accidental expo-
sures. We need to investigate and utilize
quantitative modeling approaches in the
study of interactions to uncover the animal
interactions that are relevant to human
exposure situations. Such a quantitative,
mechanistic approach to the study of
chemical interactions is fundamentally
important to achieve the ultimate goal of
assessing the health risks associated with
human exposure to complex chemical
mixtures.
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